FLASHFORWARD INTO THE FUTURE

Challenges and Prospects for Plasma-Wave Acceleration

Jens Osterhoff

FLASHFORWARD | Research Group for Plasma Wakefield Accelerators
Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies
Helmholtz Association of German Research Centres, Berlin, Germany

simulation by Alberto Martinez de la Ossa
FLASHForward contributors

> Core FLASHForward team

Engineers, assistants, and technicians
- Maik Dinter
- Sven Karstensen
- Kai Ludwig
- Frank Marutzky
- Amir Rahali
- Andrej Schleiermacher
- Sandra Thiele

Postdocs
- Gregory Boyle
- Theresa Brümmer
- Jimmy Garland
- Alexander Knetsch
- Peng Kuang
- Vladyslav Libov
- Carl Lindstrøm *(from 1/2019)*
- Zeng Ming
- Pardis Niknejadi
- Kristjan Pöder
- Lucas Schaper
- Jan-Patrick Schwinkendorf

Scientists
- Richard D’Arcy
- Jens Osterhoff
- Bernhard Schmidt
- Stephan Wesch

PhD students
- Alexander Aschikhin
- Simon Bohlen
- Pau Gonzalez
- Gregor Indorf
- Martin Meisel
- Sarah Schröder
- Bridget Sheeran
- Gabriele Tauscher
- Paul Winkler

Students
- Severin Diederichs
- Artemis Kontogoula
- Paul Pourmoussavi

> …many DESY engineering & technical support groups
active collaboration partners

Helmholtz

Universities

National labs

Networks
Accelerators are at the heart of high-energy photon sources and particle colliders.

CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER.

Particle colliders
investigation of the fundamental forces and constituents of matter.
Accelerators are at the heart of high-energy photon sources and particle colliders

CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER

Synchrotron photon sources, e.g. Free-Electron Lasers (FELs)
investigation of processes on atomic and molecular scales

Particle colliders
investigation of the fundamental forces and constituents of matter
Accelerators are at the heart of high-energy photon sources and particle colliders

CUTTING-EDGE, HIGH-END SLOW-MOTION-CAMERAS AND MICROSCOPES TO STUDY THE STRUCTURE OF MATTER

Synchrotron photon sources, e.g. Free-Electron Lasers (FELs)
investigation of processes on atomic and molecular scales

Particle colliders
investigation of the fundamental forces and constituents of matter

Applications beyond matter
- medical accelerators (e.g. cancer therapy, imaging)
- material processing (e.g. food sterilization, welding)
- accelerator-driven reactors
- cargo scanning (e.g. for nuclear contraband)
BELLA
4.3 GeV
→ 0.09 m

PETRA III
6 GeV
→ 2300 m

FLASH
1.25 GeV
→ 315 m

European X-FEL
17.5 GeV
→ 3400 m

BELLA
4.3 GeV → 0.09 m

CLEAR
kT/m plasma lens → 0.015 m

FLASHForward
2.5 GeV (from simulation) → 0.03 to 0.30 m
Plasma wakefield acceleration in a nutshell

Driver

Plasma target

~cm scale length

Witness

Laser-pulse driven
“Laser wakefield acceleration”
LWFA

Particle-beam driven
“Plasma wakefield acceleration”
PWFA

Hydrogen plasma:
a soup of electrons and protons
Plasma wakefield acceleration in a nutshell

Laser-pulse driven
“Laser wakefield acceleration”
LWFA

Particle-beam driven
“Plasma wakefield acceleration”
PWFA

Protons to electron mass ~1836, heavier particles hardly move
Plasma wakefield acceleration in a nutshell

Driver acts as electron “snow plow”, static protons pull back electrons
Plasma wakefield acceleration in a nutshell

Driver
- Laser-pulse driven
 - “Laser wakefield acceleration” (LWFA)
- Particle-beam driven
 - “Plasma wakefield acceleration” (PWFA)

Plasma target

Witness
- Driver acts as electron “snow plow”, static protons pull back electrons
Plasma wakefield acceleration in a nutshell

Driver acts as electron “snow plow”, static protons pull back electrons

Particle-beam driven
“Plasma wakefield acceleration”
PWFA

FSU Jena, Gruppe M. Kaluza

$\begin{align*}
\text{n}_e &= 1.7 \times 10^{19} \text{ cm}^{-3}, \\
\lambda_{\text{plasma}} &= 9 \mu\text{m}
\end{align*}$

M. Schnell et al., Nat. Comm. 4, 2421 (2013)
Plasma wakefield acceleration in a nutshell

Driver
- Laser-pulse driven
 - "Laser wakefield acceleration" (LWFA)
- Particle-beam driven
 - "Plasma wakefield acceleration" (PWFA)

Witness
- GeV energy gain over cm
- ~fs duration
- ~kA current
- ~µm emittance

Size of structure
\[\lambda_p \approx \frac{2\pi c}{\omega_p} \approx (33 \text{ km}) \sqrt{n_e^{-1} \text{ cm}^{-3}} \]
- Typically \(\lambda_p \approx 100 \mu m \) (for \(n_e \approx 10^{17} \text{ cm}^{-3} \))

Electric field strength
\[E \approx \frac{mc\omega_p}{e} \approx (96 \text{ V/m}) \sqrt{n_e \text{ cm}^{-3}} \]
- Typically \(E \approx 33 \text{ GV/m} \) (for \(n_e \approx 10^{17} \text{ cm}^{-3} \))

- Bunch duration: fs
 - A. Buck et al., Nature Physics 7, 543 (2011)

- GeV energy gain over cm
FLASH
1.25 GeV
→ 315 m

European X-FEL
17.5 GeV
→ 3400 m

PETRA III
6 GeV
→ 2300 m

FLASH
1.25 GeV
→ 315 m

PWFA research
+ LWFA for medical imaging

Image: Landsat/Copernicus

Google Earth
FLASHFORWARD
MEDICAL IMAGING PROTOTYPING

laser-wakefield accelerator application

Plasma accelerator (2 mm long)

> driven by 25 TW Ti:sapphire laser
> *typical:* ionization injection at 1 Hz (up to 10 Hz):
 ~1 mrad divergence, ~1 mrad pointing stability from source,
 ~1 µm norm. emittance, 48 ± 5 pC of charge, energy up to 160 MeV
FLASHFORWARD

MEDICAL IMAGING PROTOTYPING

laser-wakefield accelerator application

Plasma accelerator (2 mm long)
- driven by 25 TW Ti:sapphire laser
- *typical:* ionization injection at 1 Hz (up to 10 Hz):
 - ~1 mrad divergence, ~1 mrad pointing stability from source,
 - ~1 µm norm. emittance, 48 ± 5 pC of charge, energy up to 160 MeV

Active plasma lens (15 mm long)
- driven by 20 kV discharge
- radially symmetric, kT/m focussing optic

~0.2 m
Beam extraction from plasma with conservation of transverse normalized emittance

- beams at plasma exit:
 - ~% level energy spread
 - ≤ mm beta function, ~mrad divergence

leads to transverse emittance growth in free drift

\[\varepsilon_n^2 \cong \langle \gamma \rangle^2 \cdot (\sigma_E^2 \sigma_x^4 \sigma_z^2 + \varepsilon^2) \]

Beam extraction from plasma with conservation of transverse normalized emittance

> beams at plasma exit:
 - ~% level energy spread
 - ≤ mm beta function, ~mrad divergence

> leads to transverse emittance growth in free drift

> Plasma-to-vacuum transition ≫ β for emittance preservation
> Strong quadrupoles for beam capturing required
 Example: 1 GeV beam with 100 T/m quads fully captured only ~1 m behind plasma → emittance growth factor > 2
Prototype R&D: aberration-free active plasma lenses

First measurements reveal non-linear focussing fields

- Strong focussing optics are desirable for emittance-preserving beam capturing after release into vacuum
- Active plasma lenses are a promising technology providing up to 3 kT/m symmetric fields

\[F = I \times B, \text{ tunable and symmetric focussing force for } e\text{-beam} \]

Field measurements reveal non-linearity consistent with measured emittance growth

Likely cause: temperature gradients

Prototype R&D: aberration-free active plasma lenses

EMITTANCE PRESERVATION REALIZED WITH HEAVY GAS SPECIES

- Idea: utilize APL before temperature equilibration can take place
- Substitute Hydrogen/Helium with Argon to extend timescale $\propto m_{\text{ion}}$
- Experiment at CLEAR, CERN: 216 MeV, 50 μm rms size, 3 μm trans. norm. emittance, 410 A current at 70 ns
- Argon: emittance conservation demonstrated
 Helium: emittance not conserved

Technology attractive for
- beam capturing from plasma
- positron capturing
- adiabatic final focussing (Oide limit)

Scanning X-ray fluorescence imaging (XFI)

- imaging of gold-nanoclusters bound to anti-bodies (bound to tumors, …)
- fluorescence signal excited by ~100 keV X-rays from Thomson scattering off LWFA electrons
- 2-year goal: method proof-of-principle on isolated prostate tumor cells (end of 2019)
- distant goal: pharmacokinetics and high-resolution detection of tumors in-vivo

Supported by DESY Strategy Fund
What about high average power applications with LWFAs?

EXAMPLE: PARTICLE COLLIDER → BACK-OF-THE-ENVELOPE POWER ESTIMATES REVEAL MAIN CHALLENGE

Required power per particle beam $P_b \approx 5 \text{ MW}$	confer C.B. Schroeder *et al.*, Phys. Rev. STAB 13, 101301 (2010)
Maximum power from the grid $P_{AC} \approx 200 \text{ MW}$	confer B. Shadwick *et al.*, Phys. Plasmas 16, 056704 (2009)
→ Need 5% wallplug efficiency	from simulations
→ Efficiency laser to plasma wave $\sim 50\%$	
→ Efficiency plasma wave to beam $\sim 30\%$	
→ Expected laser-to-beam efficiency 15%	
→ Requires wallplug-to-laser efficiency 33%	

With 10 GeV LWFA stage $\times 50$ and total energy per beam $\sim 300 \text{ J}$

→ 6 J energy gain per module	
→ 40 J laser energy per module at $\sim 17 \text{ kHz}$ repetition rate	
→ 680 kW average laser power required	

Modern 1 PW LWFA lasers: $\ll 1\%$ wallplug efficiency, 1 Hz repetition rate, $\sim 100 \text{ W}$ average power

FLASH
1.25 GeV → 315 m

European X-FEL
17.5 GeV → 3400 m

PETRA III
6 GeV → 2300 m

PWFA research + LWFA for medical imaging
FLASH drives free-electron laser and accelerator research

Superconducting, high-average power system feeds multiple beam lines simultaneously

<table>
<thead>
<tr>
<th>5 MeV</th>
<th>150 MeV</th>
<th>450 MeV</th>
<th>1250 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC1</td>
<td>BC2</td>
<td>ACC23</td>
<td>BC3</td>
</tr>
<tr>
<td>ACC39</td>
<td></td>
<td></td>
<td>ACC45</td>
</tr>
<tr>
<td>ACC67</td>
<td></td>
<td></td>
<td>ACC67</td>
</tr>
</tbody>
</table>

Photo cathode

ACC → SCRF modules

BC → Bunch compressors

FLASH is an FEL user facility

- 10% of beam time (750 h / year) dedicated to accelerator research

FLASHForward is a beam line for PWFA research

Both share the same superconducting accelerator based on ILC/XFEL technology. Typical electron beam parameters:

- \(\leq 1.25 \text{ GeV energy with a few 100 pC at } \sim 100 \text{ fs rms bunch duration} \)
- \(\sim 2 \mu m \text{ trans. norm. emittance} \)
FLASHFORWARD

FUTURE-ORIENTED WAKEFIELD ACCELERATOR RESEARCH AND DEVELOPMENT AT FLASH

- a next-generation experiment for beam-driven plasma wakefield accelerator research
- unique FLASH facility features for PWFA
 - differentially pumped, windowless plasma source
 - 3rd harmonic cavity for phase-space linearization
 → shaping of beam current profile
 - 2019: X-band deflector of 1 fs resolution post-plasma
 (collaboration with FLASH 2, SINBAD, CERN & PSI)
 - future: up to 800 bunches (~MHz spacing)
 at 10 Hz macro-pulse rate, few 10 kW average power

→ A. Aschikhin et al., NIM A 806, 175 (2016)
FLASHFoward
Future-oriented wakefield accelerator research and development

- Beamline commissioning August 30th, 2017 - June 30th, 2018
- Experimentation started after July 15th, 2018

Laser transport beamline completed summer 2017

First beam in FF - August 31, 2017

LYSO screen station

Central interaction area

Final focusing section

Differential pumping

Dispersive section

Electron beamline enabling first experiments, summer 2018
FLASHFORWARD

FUTURE-ORIENTED WAKEFIELD ACCELERATOR RESEARCH AND DEVELOPMENT AT FLASH

electron beamline enabling first experiments, summer 2018

plasma source
30 mm long (up to 300 mm possible)
FLASHFORWARD

FUTURE-ORIENTED WAKEFIELD ACCELERATOR RESEARCH AND DEVELOPMENT AT FLASH

> first PWFA beam-plasma interaction on June 19th, 2018
> commissioning successful and quasi-finished June 30th, 2018
> installation ready for first experiments after July 15th, 2018

plasma source
30 mm long (up to 300 mm possible)
FLASHFORWARD

FUTURE-ORIENTED WAKEFIELD ACCELERATOR RESEARCH AND DEVELOPMENT AT FLASH

> first PWFA beam-plasma interaction on June 19th, 2018
> commissioning successful and quasi-finished June 30th, 2018
> installation ready for first experiments after July 15th, 2018

(12.3 ± 1.7) GV/m wakefield generated in 30 mm plasma cell
→ plasma cell scale length ~100 mm for GeV energy gain confirmed

12.7% total energy loss to plasma wakefield

plasma source
30 mm long (up to 300 mm possible)
Main FF scientific goals

> **X-1 Plasma cathode**: high-brightness beam generation (→ photon science)
 > 1.25 GeV energy, trans. norm. emittance ~100 nm, current \(\geq 1 \) kA, ~fs bunch duration

> **X-2 Plasma booster**: wakefield module for post acceleration (→ staging, high-energy physics)
 energy doubling, energy spread & emittance preservation, drive depletion (> 10% efficiency)

> **X-100 Investigate plasma-accelerated beams for FEL gain** (PHASE II, 2020+)

ADVANCED DIAGNOSTICS AND PROTOTYPES

<table>
<thead>
<tr>
<th>P-1</th>
<th>TR Spectroscopy</th>
<th>P-5</th>
<th>(\perp) Beam Probe</th>
<th>P-9</th>
<th>P-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PI: B. Schmidt (DESY)</td>
<td></td>
<td>PI: P. Niknejadi (DESY)</td>
<td></td>
<td>PI: A. Knetsch (DESY)</td>
</tr>
<tr>
<td>P-3</td>
<td>Betatron Radiation</td>
<td>P-6</td>
<td>Pulsed Dipole</td>
<td>P-11</td>
<td>ICS Radiation Det.</td>
</tr>
<tr>
<td></td>
<td>PI: S.P.D. Mangles (ICL)</td>
<td></td>
<td>PI: S. Wesch (DESY)</td>
<td></td>
<td>PI: S. Bohlen (DESY)</td>
</tr>
<tr>
<td>P-4</td>
<td>(\perp) Laser Probe</td>
<td>P-8</td>
<td>Active Plasma Lens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PI: M. Kaluza (U Jena)</td>
<td></td>
<td>PI: L. Schaper (DESY)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CORE EXPERIMENTS

| X-1 | Plasma Cathode
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PI: A. Knetsch (DESY)</td>
</tr>
</tbody>
</table>
| X-2 | Plasma Booster
| | PI: V. Libov (U Hamburg) |
| X-10| Transformer Ratio ↑
| | PI: V. Libov (U Hamburg) |
| X-11| Hosing Studies
| | PI: S. Wesch (DESY) |
| X-12| MHz PWFA
| | PI: R. D’Arcy (DESY) |
| X-16| Beam (De-)chirping
| | PI: R. D’Arcy (DESY) |
| X-19| Ion Motion Studies
| | PI: t.b.d. |
| X-23| Ionization Studies
| | PI: t.b.d. |
| X-100| FEL Gain
| | PI: t.b.d. |
First study: a tunable plasma-based energy dechirper

NOVEL TECHNOLOGY FOR REMOVING LONGITUDINAL ENERGY CORRELATION BY PLASMA WAKEFIELDS

- Beams from plasma wakefield accelerators may feature large chirps of order 100 MeV/mm
- Dechirping structures demonstrated up to 18 MeV/m/mm — insufficient (e.g. K.L.F. Bane, G. Stupakov, NIM A 690, 106 (2012) or S. Antipov et al., Phys. Rev. Lett. 112, 114801 (2014))
- The idea: utilize plasma wakefield to remove chirp
 - slice-energy change given by $\Delta \gamma(\zeta) = -k_p L_p E_z(\zeta)/E_0$

- experimental idea

Dechirping magnitude depends on
- bunch profile
- plasma length
- plasma density

Dechirping magnitude depends on
- bunch profile
- plasma length
- plasma density
First study: a tunable plasma-based energy dechirper

Proof-of-principle experiment to remove chirp of FLASH beam in plasma cell

- Reduction of energy spread from 1.3% to 0.3% FWHM
- Experimental demonstration of 1.8 GeV/m/mm dechirping strength
- May dramatically improve applicability of PWFA beams

X-13 Beam (De-)chirping
 PI: R. D’Arcy (DESY)

PIC simulations fit very well
- Plasma process had no measurable impact on beam stability

→ R. D’Arcy et al., submitted (2018)
Core study: a plasma-based energy booster module

Driver/witness-pair creation in dispersive section by variable mask

Beam scraper for driver/witness-pair creation

Full start-to-end simulation

Current (A) vs. z (mm)

Electron beam

Metallic slab

Side blocks

3 mm

100 µm

Cu + W alloy

Variable bunch separation

Driver

Witness

idea follows P. Muggli et al., PRSTAB 13, 052803 (2010)

X-2 Plasma Booster

PI: V. Libov (U Hamburg)

Installed in July 2018

FLASH 2

Flash Forward

B EAM SCRAPER FOR DRIVER/WITNESS-PAIR CREATION

Current (A)
Core study: a plasma-based energy booster module

CURRENT-PROFILE SHAPING FOR TRANSFORMER RATIO MAXIMIZATION

BEAM SCRAPPER FOR DRIVER/WITNESS-PAIR CREATION

Driver
Witness
variable bunch separation

FLASH2
FLASH

Full start-to-end simulation

Core study: a plasma-based energy booster module

CURRENT-PROFILE SHAPING FOR TRANSFORMER RATIO MAXIMIZATION

DRIVE BEAM SHAPING FOR TRANSFORMER RATIO MAXIMIZATION

- Transformer ratio TR ≤ 2 for symmetric drive bunch
- Current shaping for driver can overcome this, triangular beams → uniform longitudinal fields and energy loss

TR = \(\frac{E_{\text{acc}}}{E_{\text{dec}}} \)

- First detection of increased TR in plasma at PITZ, DESY Zeuthen
- TR = 4.6 ± 0.4

X-2 Plasma Booster
- PI: V. Libov (U Hamburg)
Core study: a plasma-based energy booster module

Current-profile shaping for energy spread and emittance preservation

Beam scraper for driver/witness-pair creation

- 3.9 GHz cavity and compressors for beam shaping at FLASH
- Shaped current profiles allow for uniform fields at driver and witness locations

Beam shaping for beam loading/transformer ratio control

- Triangular witness profile for energy spread conservation

Full start-to-end simulation

Current (A)

X-2 Plasma Booster
- PI: V. Libov (U Hamburg)
Core study: a plasma-based energy booster module

Current-profile shaping for energy spread and emittance preservation

Beam scraper for driver/witness-pair creation

Full start-to-end simulation

Emittance and energy spread largely conserved in simulations

Initial norm. emittance 2.0 µm, energy spread 0.2%, energy 1.0 GeV

X-2 Plasma Booster
 PI: V. Libov (U Hamburg)
Core study: a plasma-based energy booster module

EXPERIMENTAL DRIVER/WITNESS CREATION

BEAM SCRAPER FOR DRIVER/WITNESS-PAIR CREATION

Scraper commissioning

- Long. phase space pre-scraper from LOLA transverse deflector
- Measured post-scraper spectrometer data consistent with simulations
- Direct proof of double-bunch generation with transverse deflector in 2019

Full start-to-end simulation

X-2 Plasma Booster

- PI: V. Libov (U Hamburg)
Future study: hosing growth rates and mitigation

Start-to-end simulations show excitation of the hosing instability

- Asymmetries in charge distribution and momentum expected, seed the hosing instability
- Asymmetries caused by coupler kicks and CSR in bends

Simulation of charge distribution before plasma

Formation of slice-centroid offsets in high-current bunches

- Emission of synchrotron radiation in dispersive element → causes energy loss → dispersion not closed → kick/offset w.r.t. reference orbit
- Energy loss/kick dependent on slice current → non-uniform along beam
- Emitted radiation acts back on beam
Future study: hosing growth rates and mitigation

START-TO-END SIMULATIONS SHOW EXCITATION OF THE HOSING INSTABILITY

- Asymmetries in charge distribution and momentum expected, seed the hosing instability
- Asymmetries caused by coupler kicks and CSR in bends
- Full start-to-end simulations incl. CSR predict hosing modes can be (easily) excited
- Measurement of growth rates & hosing saturation vs. beam parameters one of next steps at FLASHForward

Simulated charge distribution before plasma

- **y (mm)**
- **z (mm)**

Witness **Driver**

X-11 Hosing Studies
- PI: S. Wesch (DESY)
Future study: hosing growth rates and mitigation

Start-to-end simulations show excitation of the hosing instability - Experiments not yet

Full start-to-end simulations incl. CSR predict hosing modes can be (easily) excited

Measurement of growth rates & hosing saturation vs. beam parameters one of next steps at FLASHForward

No sign of hosing so far in experiments

Suppressed owing to large focal size? (current diagnostic resolution limited at ~20µm…)

Hosing mitigation

Hosing Studies

- PI: S. Wesch (DESY)
Plasma-based accelerator science at **FLASHFORWARD**

SMALL IS BEAUTIFUL (AND USEFUL*)

- Plasma wakefield acceleration is an intriguing technology to radically miniaturize particle accelerators
- First applications with laser drivers in photon science and medical imaging are within reach
- High-average power applications are incompatible with current laser technology, will require particle beam drivers (for the foreseeable future)
- **FLASHFORWARD** is a unique, next-generation experiment toward high-brightness, high-quality, high-average power plasma accelerators
- Experiments have started this summer. Exciting times are ahead!

Beam-driven wakefield acceleration

GeV energy booster, high-brightness beams

Aberration-free active plasma lens

sym. kT/m focussing